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Abstract 

Keywords

Prior to the era of artificial intelligence (AI) and big data, research into wireless communications primarily followed a 
conventional route involving problem analysis, model building and calibration, algorithm design and tuning, and holistic 
and empirical verification. However, this methodology often faced limitations when dealing with large-scale and complex 
problems and managing dynamic and massive data, resulting in inefficiencies and limited performance of traditional 
communication systems and methods. As such, wireless communications have embraced the revolutionary impact of AI and 
machine learning (ML), leading to the development of more adaptive, efficient, and intelligent systems and algorithms. This 
technological shift paves the way to intelligent information transmission and processing. This paper discusses the typical 
roles of ML in intelligent wireless communications, as well as its features, challenges, and practical considerations.
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1 Introduction

Since the 19th century, radio communications have started a 
new era of information transmission for human society. The 
early stages of radio transmission technology, such as Morse 
codes and telegraph machines, relied heavily on manual 
operations, which limited the efficiency and reliability of 
information exchange. Aiming to automate the task of 
information transmission and processing at a sophisticated 
level, the first-generation concept of "intelligent transmission  
and processing" emerged. Subsequently, the 20th century 
witnessed significant developments in module-based 
communication systems. These systems encompass 
essential modules such as source coding, channel coding, 
modulation, transmit beamforming, wireless channel 
transmission, receive beamforming, demodulation, signal 
detection, channel decoding, and source decoding [1–3].  
Methodologically, the development of module-based 
wireless communications and signal processing follows 
a systematic research trajectory that includes problem 
analysis, model development and calibration, algorithm 
design and optimization, and empirical validation, 
feedback, and improvement. Notably, every step in this 
methodological loop demands large volumes of human 
intellectual endeavors.

In the 21st century, wireless communication systems 
are expected to deliver extremely vast amounts of data 
in various formats, such as audio, video, and text, while 
ensuring low latency, high data rates, and reliability. 
Furthermore, the incorporation of new network topologies 
(e.g., internet-of-things networks, unmanned-aerial-vehicle 
relay networks) and cutting-edge functions (e.g., integrated 
sensing and communications [ISAC], integrated computing 
and communications [ICAC]) has added complexity to the 
design of modern communication systems. This complexity 
is particularly evident in the following three aspects:

 ● Addressing different types of modeling uncertainties in 
not only holistic systems but also individual modules

 ● Leveraging various forms of big data generated by user 
equipment and base stations

 ● Solving challenging algorithmic problems in realizing 
the networks

Traditional design methods rely heavily on the intensive 
human intellectual efforts and are proven inadequate for 
managing large-scale and complex issues and handling 
dynamic extensive data. This inadequacy results in 
inefficiencies and limited performance of information 

transmission and processing. In response, wireless 
communications and signal processing have embraced the 
transformative potential of artificial intelligence (AI) and 
machine learning (ML) [4]; for comprehensive surveys of 
ML on communications, see [5–11]. This technological 
and methodological shift has enabled the development of 
more adaptive, efficient, robust, and intelligent systems and 
algorithms. Consequently, the second-generation concept 
of "intelligent transmission and processing" is emerging, 
aiming to significantly reduce the need for human 
intellectual efforts and improve the integrated performances 
of communication systems.

Figure 1 illustrates the philosophical connotations of 
intelligent transmission and processing. A technical 
visualization of ML-empowered intelligent transmission and 
processing is shown in Figure 2.

Figure 1 Connotations of intelligent transmission and processing 
(Icon credit: CLEANPNG.com and FLATICON.com)

(a) Free of operation (b) Free of thinking

Figure 2 An end-to-end structure of intelligent transmission and 
processing systems. The intelligent transmitter and receiver act as end-
to-end information processors f, where each f is learned by machines 

from data; the transmitter and receiver can automatically adapt to 
the real-time characteristics of wireless channels. The intelligence is 
reflected in the sense that human intellectual efforts are no longer 

explicitly required to study large-scale, dynamic, and uncertain 
information transmission mechanisms and processing solutions.

To showcase the power of ML techniques in enabling 
intelligent transmission and processing, this paper reviews 
trending ML applications in communication systems and 
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Example (Ice Cream Sales and Shark Attacks): Regression  
analysis using historical data shows a positive relationship 
between ice cream sales and shark attacks, which is 
illogical. However, the primary factor driving this correlation 
is temperature: higher temperatures lead to increased ice 
cream sales and beach attendance; more beach visitors 
result in more shark attacks [21]. Hence, mechanism 
modeling is vital.

Before digging into ML applications in communications, we 
quickly review the essentials of ML concepts and methods 
in Section 2, especially those of trustworthy ML. The 
aim is to highlight the primary considerations, including 
philosophical and technical facets, of using ML in wireless 
communications.

2 Machine Learning Concepts and 
Methods

ML is concerned with discovering hidden information and 
patterns from data. The primary advantage is its ability 
to explain data automatically, thus freeing humans from 
studying the underlying data-generating mechanisms. 
This feature inherently enables machine intelligence in the 
practice of communications, specifically, in the transmission 
and processing of information [5, 7, 8, 11, 22].

Depending on the characteristics of tasks, ML can 
be categorized into four genres: supervised learning, 
unsupervised learning, semi-supervised learning, and 
reinforcement learning. Mathematically, the key to all ML 
tasks is to find a function f , called a hypothesis, that maps 
the observed data to a desired decision; see Figure 4 for a 
conceptual illustration. Specific examples of ML are as follows.

Figure 3 To choose an ML model or a physical-law model, this is a 
question! Nothing is free, although some are cheap! Choose the one 

that fits your situation and expectations well! Whenever possible, 
combine them to improve the overall system performance. 

(Icon credit: FLATICON.com)

methods, including physical-layer communications [6, 12], 
semantic communications [13, 14], resource allocations in 
communications [15], ICAC [16], and ISAC [17]. However, 
the ambition of this paper is not to offer an exhaustive list 
of all existing works in the area. Rather, we aim to illuminate 
the path towards intelligent transmission and processing.

Although ML has the potential to reform the theory and 
practice of wireless communications, the challenges and 
disadvantages of utilizing ML-based approaches accompany 
its opportunities and advantages [4], for example, the 
reliability issue due to the lack of interpretability of 
black-box learning methods (e.g., deep learning), the 
generalization issue due to the limited training data and the 
non-stationarities of the underlying data-generating laws, 
and the resource deficits in training and storing large ML 
models (e.g., deep learning); see Figure 3 for a motivational 
understanding. In addition to the three primary challenges 
exemplified, other instances may also arise, e.g., the 
scalability issue caused during the reconfiguration of system 
topology or hardware (e.g., removing or adding antennas; 
which can be seen as a kind of generalization problem) and 
the security and privacy issue in networked learning [16]. 
The main message is that in advancing communication 
theories and developing communication systems, the role 
of ML should not be overstated: ML (especially data-driven 
deep learning) can be a valuable factor to consider rather 
than an absolute rule to follow; problem analyses and 
mechanism modeling are always important; see [18–20]   
for technical investigations and justifications; see also the 
example below for a motivational understanding.

Figure 4 Conceptual illustration of ML. ML is to find a mapping f from 
the input data to a decision. The upper example is a supervised ML 
problem where an image classifier f recognizes the image as a bear. 

The lower example is a reinforcement learning problem where an action 
generator f recommends the robot to choose the right path in the 

current situation. (The two images are generated by Microsoft Copilot.)
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 ● Supervised Learning: Supervised learning summarizes 
the hidden information of labeled data and includes 
regression and classification as two main types of tasks. 

Given the deterministic or random variable pair (x, s) 

where x is the feature vector and s is the continuous-
valued expected response, regression aims to find a 
functional relation f  from x to s such that predicted 

label f(x) can be as close as possible to the target 

label s. The closeness is measured by a loss function 
L  through L[s, f(x)], for example, the mean-squared 

error [s− f(x)]H [s− f(x)]. In handling the deterministic 

variable pair (x, s), there potentially exists a function f  

such that f(x) is exactly equal to s for every realization 

of (x, s), i.e., L[s, f(x)] ≡ 0. As for the random variable 

pair (x, s), however, the exact equality cannot be 

generally guaranteed. Instead, the loss is calculated 

under the joint distribution Px, s of (x, s) of (x, s), for example, 

the expectation of the loss E(x, s)∼Px, s
L[s, f(x)]. When 

s is one-dimensional and takes discrete values, we have 

the classification problems where L[s, f(x)] is defined 

by, e.g., the indicator function I{s ̸= f(x)}. In this case, 
s  indexes different target classes; (e.g., for binary 

classification, s ∈ {−1, 1}).

 ● Unsupervised Learning: In unsupervised learning, there 
are no labels s for the collected data, and only feature 
data x is present. Therefore, we focus on discovering the 
hidden information from the realizations of the datum 
variable x . Clustering is a typical task of unsupervised 
learning. Different from classification which predicts 
the categorical labels s of new data points x based on 
a training dataset with known labels, clustering aims 
at grouping similar data points x together based on 
their features without predefined categorical labels. In 
summary, clustering is to find a function f  that maps 
data x into a suitable group. Feature transformation 
is another example of unsupervised learning, which 
transforms original feature data x into another feature 

space using a learned mapping f ; Specifically, y = f(x) 

—compare this with a time-domain signal x and its 
Fourier transform y. Autoencoders, a type of artificial 
neural network, provide an excellent example of 
feature transformation through their encoding and 
decoding operations. Yet another important example of 
unsupervised learning is distribution estimation, i.e., to 
estimate the data-generating distribution that best fits 
(or describes) the collected data. Distribution estimation 
is particularly vital in generative tasks such as producing 
a new sample based on collected samples; for example, 
given a group of cat images, determining how to 

produce a new cat image by drawing from the fitted 
distribution?

 ● Semi-supervised Learning: Semi-supervised learning 
can be considered a variant of supervised learning 
as it extends the principles of supervised learning 

by incorporating a mixture of labeled data (x, s) and 

unlabeled data x′ . While supervised learning relies 
entirely on labeled data to train the model, semi-
supervised learning aims to improve model performance 
and generalization capabilities by leveraging the 
additional unlabeled data. The semi-supervised approach 
is particularly useful when acquiring large amounts 
of labeled data is expensive or time-consuming, while 
unlabeled data is abundant and easy to obtain. By 
leveraging the information from the unlabeled data 
along with that from the labeled data, semi-supervised 
learning can find a model f  that has better prediction 
performance (of the label s associated with the data x)  
compared to purely supervised learning methods that 
rely solely on labeled data.

 ● Reinforcement Learning: Reinforcement learning is 
concerned with decision-making problems in a dynamic 
and uncertain environment. Unlike supervised learning, 
which uses labeled data, and unsupervised learning, 
which finds patterns in unlabeled data, reinforcement 
learning involves the agent interacting with the 
environment, receiving feedback in the form of rewards 
or penalties, and using this feedback to learn optimal 
behaviors or strategies over time. To be specific, the 
agent autonomously learns to make decisions in an 
environment by performing actions a, in response to 
current states s, in order to maximize the cumulative 
reward. Therefore, mathematically, an action-generating 
function f  from state s to action a needs to be learned.

For specific applications of the four ML genres in wireless 
communications, refer to [8, 23].

Data-Driven and Model-Driven Learning: Considering the 
degree of human intelligence and domain knowledge 
involved, ML can be classified into data-driven and 
model-driven approaches. Data-driven ML relies entirely 
on historical data and does not involve any analysis of 
underlying data-generating mechanisms. In contrast, 
model-driven ML incorporates, to varying extents, studying 
the underlying physical mechanisms and data-generating 
models. Intelligent information transmission and processing 
can benefit, in terms of improving overall performance, 
from the collaboration between communication-systems 
modeling and big data discovery [12, 23]. For example, in 
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signal detection, suppose that we have T  pilot data pairs 
{(s1, x1), (s2, x2), . . . , (sT , xT )} where xi are the received 

signals and si are the transmitted symbols, for i = 1, 2, . . . , T .  
Data-driven ML directly utilizes all the data to train a 
detector f  from x to s. In contrast, model-driven ML first 
considers the signal-transmission model x = Hs+ v where 

H denotes the channel matrix and v the channel noise, and 
then finds a detector f  based on the above underlying data-
generating mechanism. For detailed technical treatments 
and discussions, see [19, 20, 24, 25].

Hypothesis Space and Deep Learning: To locate a best 
decision function f , a candidate function space H (called 
hypothesis space) from which f  is drawn, needs to be 
specified. To clarify further, for instance, supervised 
statistical ML can be formulated as:

,

where the joint distribution Px, s of (x, s), which is unknown in 

practice, can be estimated using collected historical data 
(e.g., using empirical distribution). As an example, signal 
detection problems can be characterized as described earlier, 
where f  is a detector, x is the antenna-received signal, and 
s is the transmitted symbol (e.g., constellation points) [20]; 
the loss function L can be mean-squared error or symbol-
error rate. Canonical examples for hypothesis space H are 
as follows.

 ● Linear Function Space: H only includes the linear 
transforms of input x . In the signal detection case, H 
contains only linear detectors.

 ● Reproducing Kernel Hilbert Space: H includes all linear 

transforms of the nonlinearly-lifted-feature φ(x) of the 

original feature x, using a feature mapping function φ. 
In essence, H contains some specific types of nonlinear 
functions of input x.

 ● Neural Network Function Space: H is represented 
(or structured, characterized) by neural networks, 
for instance, multi-layer perceptron, recurrent neural 
networks, convolutional neural networks (CNNs), radial 
basis neural networks, autoencoders, or transformers. 
Each given neural network defines a special type of 
function space H. When the employed neural network 
has deep structures with many hidden layers being 
included, H denotes a deep-neural-network function 
space. Upon operating with deep neural networks, ML is 
referred to as deep learning.

On the other hand, with the involvement of domain 
knowledge and expert designs, a hypothesis space H can 
be accordingly adapted or tailored to a domain-specific 

problem [12, 18, 23]. Therefore, model-driven ML is to 
devise an ad-hoc and structured candidate space H ,  
by leveraging known problem characteristics and data-
generating mechanisms.

Explainability, Reliability, and Sustainability: Modern ML 
research addresses several advanced concerns, including 
explainability, reliability, and sustainability of learning 
models [26, 27]. Explainable ML seeks to make learning 
models transparent, interpretable, and accountable through 
techniques such as feature engineering and physical 
modeling [28]; model-driven ML, which leverages underlying 
physical data-generating mechanisms, can be seen as such 
a scheme [12, 18]. Reliable ML focuses on creating robust 
and accurate learning models that generalize well to new 
data (that are not used in the training stage), tackling issues 
such as overfitting, generalization, knowledge migration, 
and limited-sample learning [20, 29–31]. Sustainable ML 
aims to develop learning models with minimal negative 
impact on the environment and society, addressing 
energy efficiency, privacy and security, and fairness and 
bias [16, 32]. In the context of intelligent information 
transmission and processing, the three considerations (i.e., 
explainability, reliability, and sustainability) are of natural 
importance and significance. Therefore, they are the primary 
considerations in developing ML-based solutions for wireless 
communications.

Centralized and Distributed Learning: ML models can 
be trained using various approaches depending on the 
structure of the data distribution and the architecture of 
the computation. Two primary paradigms in this context 
are centralized learning and distributed learning [33, 34]. 
Centralized learning involves collecting and storing all 
training data in a single central location, such as a data 
center or cloud server, and the ML model is trained on 
this aggregated dataset. Distributed learning, on the other 
hand, involves training ML models in a distributed manner 
across multiple devices (or nodes), each of which holds 
a portion of the data. A prime example of distributed 
learning is federated learning, where multiple clients 
(e.g., smartphones, internet-of-things devices, or different 
organizations) collaboratively train a model without sharing 
their local data. Instead, each client trains the model on its 
local data and only shares the model updates (gradients 
or weights) with a central server, which aggregates these 
updates to form a global model. Both centralized and 
distributed learning methods are beneficial for advancing 
future-generation communication systems because they 
can adapt to diverse modern communication network 
typologies.
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3 Physical Layer Communications

Physical layer communications aim to reliably transmit raw 
data streams, e.g., binary bits, through physical mediums. 
Figure 5 presents a traditional architectural diagram of 
wireless communications, featuring various functional 
modules (or blocks) that are meticulously designed by 
humans in accordance with fundamental mathematical and 
physical principles. This block-based diagram is structurally 
different from the ML-empowered architectural diagram 
shown in Figure 2, where interconnected functional modules 
are taken over by end-to-end operating parts.

In addition to the highly integrated (i.e., highly intelligent) 
structure in Figure 2, ML-based transmission and processing 
systems can also be partially intelligentized. For example, in 
one scenario, only the channel coding or decoding block is 
managed by ML, meaning that the channel coding scheme 
is designed by machines rather than information scientists. 
In another scenario, ML is used solely for the transmit 
beamformer or the receive beamformer. A conceptual 
illustration is shown in Figure 6.

Figure 5 The module-based structure of traditional transmission and 
processing systems. Every block acts as an information processor f,  
where f is elaborately designed by scientists based on underlying  

physical mechanisms and mathematical laws.

Figure 6 In contrast to the highly integrated structure 
in Figure 2, each individual module in Figure 5 can be 

augmented by ML. (Icon credit: FLATICON.com.)

In technical details, applications of ML in physical layer 
communications include overall end-to-end system design 
[35, 36] (Figure 2) and individual module design (Figure 6). 
The latter, to be specific, encompasses: 

 ● coding/decoding techniques, for example, source coding 
[37], channel coding [38, 39] , and joint source-channel 
coding (JSCC) [40, 41]

 ● signal modulation and detection [25, 42]

 ● transmit and receive beamforming [20, 43–46], for 
example, beam alignment and beam tracking [47–50]

 ● channel estimation and feedback [51, 52]

among many others. For comprehensive and recent surveys, 
see [6, 53, 54].

Coding and decoding techniques are vital in digital 
communications, ensuring efficient and reliable data 
transmission. Recently, ML has been increasingly applied 
to enhance these techniques, encompassing source coding, 
channel coding, and JSCC. Traditionally, source coding (i.e., 
data compression) reduces data redundancy for efficient 
transmission and storage. ML techniques, such as neural-
network-based autoencoders, have revolutionized this 
field. Autoencoders learn efficient representations of 
data by encoding it into a lower-dimensional space and 
then reconstructing it, achieving high compression rates 
with minimal loss of information [55]. Channel coding 
adds redundancy to data in order to detect and correct 
transmission errors caused by noisy channels. ML models, 
particularly deep learning techniques, have been applied to 
develop novel error correction codes. For example, neural 
decoders have been designed to decode complex schemes 
like low-density parity-check (LDPC) [56] and Turbo codes 
[57], offering improved performance over traditional 
algorithms, especially in highly noisy environments. JSCC 
integrates source and channel coding to optimize overall 
system performance. ML models, such as variational 
autoencoders (VAEs) [58], CNNs [59], and generative 
adversarial networks (GANs) [60], are used to jointly 
learn the representation and error correction codes. These 
models can adapt to the characteristics of both the source 
and the channel, achieving better compression and error 
resilience than traditional methods. Overall, ML-based 
coding and decoding techniques represent a significant 
advancement in digital communications. By leveraging the 
predictive and adaptive capabilities of ML, these techniques 
enhance data compression, error correction, and overall 
transmission efficiency. This lays the foundation for creating 
communications systems that are more robust and efficient.
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Signal modulation and detection, which enable the 
transmission and interpretation of data over various channels, 
are fundamental processes in digital communications.  
Recently, ML techniques have been applied to enhance 
these processes, improving efficiency and reliability. 
Modulation involves altering a carrier signal's properties, 
such as amplitude, frequency, or phase, to encode 
information. Traditional modulation schemes include 
amplitude modulation (AM), frequency modulation (FM), 
and phase shift keying (PSK). ML techniques, particularly 
deep learning models, are now used to design adaptive 
modulation schemes. These models can dynamically adjust 
modulation parameters based on the channel conditions, 
optimizing performance in real time. For instance, neural 
networks can learn complex modulation patterns that 
maximize data throughput and minimize error rates [61]. 
Detection involves demodulating the received signal to 
recover the transmitted information. Traditional methods 
rely on predefined algorithms to estimate the transmitted 
data but often assume specific channel characteristics. ML 
approaches, such as fully connected deep neural networks 
[42] and transfer learning [62], have been employed to 
enhance signal detection. These models can learn from 
data to accurately detect signals under varying and complex 
channel conditions, improving robustness against noise and 
interference. Overall, the integration of ML techniques in 
signal modulation and detection represents a significant 
leap forward in communications technology — it enhances 
data transmission efficiency, resilience to noise, and overall 
system performance.

In wireless communication systems, transmit and receive 
beamforming techniques are essential for enhancing signal 
quality and increasing data throughput. Beamforming 
directs the transmission or reception of signals in specific 
directions using antenna arrays, improving signal strength 
and reducing interference. Recently, ML techniques have 
significantly advanced beamforming performance and 
adaptability. For transmit beamforming, traditional methods, 
such as phased array systems, use predefined algorithms 
to adjust the phase and amplitude of signals from multiple 
antennas. In contrast, ML techniques, particularly deep 
learning models, optimize this process by learning from 
environmental data. As an example, reinforcement learning 
can dynamically adjust beamforming patterns in real time 
based on feedback from the communication environment, 
enhancing performance in complex and changing scenarios 
[63, 64]. For receive beamforming, conventional methods, 
such as minimum variance distortionless response (MVDR) 
and maximal ratio combining (MRC), rely on statistical 

models of the signal environment. ML approaches, 
such as CNNs, improve upon these by learning optimal 
beamforming weights directly from data, allowing for more 
accurate and robust signal reception in diverse and dynamic 
environments [65, 66]. Beam alignment and tracking are 
crucial subcategories of beamforming, particularly important 
in high-frequency bands like millimeter-wave (mmWave) 
and terahertz communications. These techniques ensure 
that the transmitter and receiver maintain optimal beam 
alignment to maximize signal strength and data throughput 
[49, 50, 67]. Traditional alignment methods rely on 
exhaustive search or iterative algorithms, which are time-
consuming and computationally intensive. ML approaches, 
such as supervised learning, multi-armed bandits, and 
reinforcement learning, provide more efficient solutions by 
predicting optimal beam directions from historical data, 
significantly reducing the search space. Beam tracking 
maintains alignment as the transmitter or receiver moves 
or as the environment changes. ML techniques, particularly 
deep learning models, enhance tracking by predicting beam 
direction changes in real time. Recurrent neural networks 
and long short-term memory networks, which capture 
temporal dependencies, are particularly effective for this 
purpose. For technical details on ML-based beam alignment 
and tracking, see [47–50, 67]. In summary, the integration 
of ML into beamforming, including beam alignment and 
tracking, is critical for next-generation networks such as 
5G and beyond, because these ML-driven techniques can 
leverage predictive and adaptive capabilities to enhance 
signal quality, reduce interference, and optimize system 
performance.

Channel estimation and feedback techniques are of 
high importance in wireless communication systems for 
accurately characterizing the communication channel 
and ensuring efficient data transmission. These processes 
involve measuring the channel's properties and providing 
necessary feedback to transmitters. Recently, ML techniques 
have been applied to enhance these processes, offering 
significant improvements in accuracy and efficiency [68, 69].  
Channel estimation involves predicting the state of the 
communication channel to optimize signal transmission 
and reception. Traditional methods, such as minimum 
mean-squared error (MMSE), rely on statistical models and 
require significant computational resources. ML approaches, 
especially deep learning models, have introduced new ways 
to perform channel estimation with higher accuracy, and 
potentially, lower computational complexity. For instance, 
CNNs can learn to estimate channel states directly from 
received signal data, providing more robust and adaptive 
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deep learning models, including transformers, CNNs, and 
recurrent neural networks, have been widely utilized to 
analyze and predict the semantic relevance of data, thus 
optimizing bandwidth usage and improving communication 
efficiency. To be specific, natural language processing (NLP) 
algorithms allow for the extraction and interpretation of 
semantic content from text and audio, facilitating more 
meaningful data compression and transmission [77, 78]; 
computer vision methods, on the other hand, enable the 
extraction and interpretation of semantic meaning from 
image and video [79].

Recent research has demonstrated the potential of ML-
driven semantic communications in various applications. 
For example, in [13], transceiver neural networks 
have been designed to directly transmit text semantic 
meaning, which significantly reduces the demand on 
communication resources and improves the overall 
transmission performance. Another example is [80], 
in which an efficient system for video conferencing is 
developed to improve transmission efficiency. Most 
studies in semantic communications focus on JSCC to save 
communication resources. However, this approach requires 
changing the existing communication infrastructures and 
therefore hinders practical implementation. As such, a 
pragmatic approach to wireless semantic transmission 
through revising some modules in existing infrastructures 
is reported [14]. To guarantee semantic transmission 
reliability and communication efficiency,  the spectral 
efficiency in the semantic domain and the semantic-aware 
resource allocation issues have been investigated in [81]. 
In addition to the above representative applications, the 
synergy between semantic communications and emerging 
technologies, such as the internet of things (IoT) [82] and 
edge computing [83], is fostering new opportunities for 
intelligent and context-aware communication systems. By 
leveraging distributed ML models, semantic communication 
systems can dynamically adapt to changing environmental 
conditions and user requirements, ensuring robust and 
efficient information exchange [84]. 

solutions in complex environments [70]. Long short-term 
memory networks are particularly effective for capturing 
temporal dependencies in channel conditions, improving 
estimation accuracy [71]. Feedback mechanisms forward 
channel state information (CSI) from the receiver back 
to the transmitter, allowing for real-time adaptation of 
transmission setups. Traditional feedback methods often 
involve quantizing and encoding the CSI, which may 
incur delays and inaccuracies. ML techniques, such as 
autoencoders and CNNs, improve feedback efficiency by 
compressing and reconstructing the CSI with minimal 
loss of information [52]. This allows for more precise and 
timely adjustments to transmission setups. In addition, 
ML models can simultaneously handle channel estimation 
and feedback, optimizing both processes in an integrated 
manner [69]. This holistic approach leverages the strengths 
of ML to enhance overall system performance.

4 Semantic Communications

Semantic communications, unlike conventional physical-
layer communications, focus on transmitting semantic 
information conveyed in original data (e.g., image, text, 
audio) rather than bit-wise raw information. The primary 
benefit of semantic communications is that the transmission 
overloads of wireless channels can be significantly reduced 
compared to bit-wise transmission. Consequently, the 
information transmission speed and efficiency can be 
considerably improved. For comprehensive and recent 
surveys in semantic communications, see [72–75].

The key to semantic communications is to extract the 
semantic information from raw data. Therefore, semantic 
communications can be realized by elegantly designing the 
source coding and decoding strategies. It can also be 
actualized through JSCC and decoding. The difficulty, 
however, is that the semantic information of given raw data 
is specific to a task (see Figure 7), due to which, a generally 
well-accepted mathematical analysis, modeling, and 
computing framework for semantic communications is still 
lacking; for exploring works in this direction, see [76]. 
Therefore, for a specified communication task, the semantic 
coding and decoding schemes need to be elaborated. In the 
context of intelligent transmission and processing, semantic 
communications can be implicitly realized in highly 
integrated end-to-end transceivers, shown in Figure 2.

ML approaches  p lay  a  p i vo ta l  ro le  in  semant i c 
communications, enabling systems to understand, process, 
and convey meaning more accurately. Techniques such as 

Figure 7 The semantic information of raw data is task-specific. Losslessly 
transmitting a high-definite image is time- and resource-consuming. 

However, accurately transmitting a semantic message can be relatively 
simpler and cheaper. (The image is generated by Microsoft Copilot.)
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In summary, semantic communications, underpinned by 
advanced ML techniques, define a brilliant future direction 
for communication systems. This innovative approach 
promises to reform how information is transmitted and 
understood, offering profound implications for the efficiency 
and effectiveness of future communication networks.

5 Resource Allocation in 
Communications

In wireless communications, resource allocation is concerned 
with how to efficiently manage and utilize  spectra, power, 
computing, space, and time resources, thus improving the 
overall communication network performance, e.g., higher 
throughput, lower latency, larger coverage, higher reliability, 
to name a few [15, 85, 86]. Typical applications encompass 
link scheduling, message routing, power allocation, channel 
selection, beamforming, spectra access and management, 
and division protocol design (i.e., time division, frequency 
division, etc.). From the mathematical programming 
perspective, resource allocation is often formulated as 
optimization problems. From the operations research 
perspective, assignment and scheduling are two pivotal 
techniques; the former handles static resource allocation 
problems, while the latter addresses dynamic ones; the 
static and dynamic features are with respect to time. From 
the computational and algorithmic perspective, standard 
and trending solution frameworks include the following:

 ● Continuous optimization, discrete (e.g., combinatorial, 
integer) optimization, and mixed optimization

 ● Single-objective optimization and multi-objective 
optimization

 ● Linear programming and nonlinear programming

 ● Convex optimization and non-convex optimization

 ● Smooth optimization and non-smooth optimization

 ● Min-Max optimization (e.g., game theory, worst-case 
robust analyses)

 ● Deterministic programming and stochastic programming 
(i.e., whether random variables are involved; if involved, 
associated distributions are considered)

 ● Single-stage optimization (i.e., static programming) and 
multi-stage optimization (i.e., dynamic programming)

 ● Heuristic optimization (e.g., genetic algorithm, particle 
swarm optimization, simulated annealing)

 ● Surrogate optimization which is also known as black-
box optimization (e.g., Bayesian optimization)

 ● ML-based optimization (e.g., solution methods based on 
reinforcement learning and deep learning)

The canonical applications and solution frameworks of 
resource allocation in wireless communications are shown 
in Figure 8. For introductory and motivational reading on 
this topic, refer to [85, 87, 88].

Nowadays, the advent of ISAC [89] has slightly changed the 
connotation of traditional resource allocation. This is because 
the best resource allocation scheme for communication is 
not necessarily the same as (or in accordance with) that for 
sensing; see [90]. For example, the optimal waveforms for 
communication and sensing are usually dissimilar [91, 92]  
because the two radio functions have different or even 
contradicting design preferences. Therefore, diverse resources, 
including radio, computing, power, time, beam, etc., should 
be delicately allocated to satisfy the individual performance 
requirements of communication and sensing. The same 
dilemma holds for ICAC, e.g., edge computing [93] and 
networked control* [94], because limited resources need to 
be elegantly distributed to computing and communication. 
For further details, see [95, 96].

ML techniques have emerged as powerful tools to address 
the challenges brought by resource allocation in wireless 
communications. Recent advancements have demonstrated 
the potential of ML in various resource allocation tasks. 
For instance, deep reinforcement learning has been applied 
to optimize spectrum allocation, power control, and user 

Figure 8 Typical applications and solution frameworks of resource 
allocation in wireless communications. OFDM: orthogonal frequency 

division multiplexing; QoS: quality of service.  
(Icon credit: FLATICON. com.)

*Controllers are, by their nature, information processors and are therefore 
ad-hoc computing modules.
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association in heterogeneous networks, showing significant 
improvements over conventional methods [22, 97–102]. 
Similarly, supervised learning algorithms have been 
used to efficiently solve complex optimization problems 
in resource allocation such as mixed integer nonlinear 
programming (MINLP) [103]. In addition, unsupervised 
learning techniques can also be employed to solve resource 
allocation problems and refine the solutions, e.g., the graph 
embedding trick in link scheduling [104]. 

Traditional resource allocation methods rely heavily on 
human intellect to build exact models and develop ad-hoc 
solution methods, which can be suboptimal and even 
inflexible in dynamic, complex, and large-scale scenarios. 
ML, particularly deep learning and reinforcement learning, 
offers the ability to model complex interactions with 
environments, predict communication-network states, and 
optimize decisions in a real-time manner, thereby enhancing 
the overall performance and adaptability of wireless 
networks [15]. To be specific, communication channels in 
practice are often time-varying, however, mathematically 
considering such model uncertainties is not straightforward. 
This is because we do not exactly know how the channels 
evolve over time. Even worse, the resultant mathematical 
programming models are computationally complex, and 
therefore, hard to be efficiently and optimally solved. The 
role of ML, in this sense, is to leverage accessible real-world 
data, discover the hidden knowledge and patterns that the 
data convey, and automatically find satisfactory resource 
allocation decisions. In technical details, on the one hand, 
ML can assist in solving computationally diff icult 
optimization problems because resource allocation 
optimization can be seen as a mapping from parameters to 
decisions. This data-to-decision mapping benefits from the 
powerful function-fitting ability of supervised learning 
based on deep neural networks, where labeled data-decision 
pairs are generated by well-behaved artifact solution 
methods. On the other hand, ML can treat the utility 
function of a resource allocation problem as the loss 
function in the training stage. This strategy allows ML to 
generate high-quality resource allocation decisions without 
relying on legacy human-made algorithms. In addition to 
the above two ML schemes in resource allocation, another 
archetype, called algorithm unrolling [18], employs neural 
networks to unroll existing efficient iterative algorithms. 
Specifically, each neural network layer acts as an iteration 
step of an iterative algorithm. By cascading several layers, 
an iteration process of the algorithm can be mimicked. This 
algorithm-instructed archetype is also referred to as model-
driven deep learning [12], where the architecture of a deep 

neural network is tailored considering domain knowledge, 
thus improving the generalizability of the network and 
reducing the required size of the training data set. The 
fourth promising ML paradigm in resource allocation is to 
use reinforcement learning to explore unknown and hard-
to-model environments (e.g., complex and dynamic physical 
transmission channels). By interacting with environments, 
intelligent resource allocation solutions can be learned. The 
four typical roles of ML in resource allocation are 
summarized in Figure 9. The first benefit of using ML 
methods is their fast computing speed in the running stage, 
although the training stage might be computationally heavy 
(when compared with the first three schemes). The second 
benefit of using ML methods is the ability to respond to 
dynamic and uncertain (even unknown) environments 
without explicit physical modeling (when compared with 
the fourth scheme, i.e., the reinforcement learning scheme).

6 Beyond Data Transmission: 
Sensing and Computing

Wireless communicat ion systems are undergoing 
transformative changes driven by the increasing demand 
for low-latency and high-speed connectivity, the growing 
need for sensing abilities (e.g., to localize and track users) 
assisting high-performance communications, and the 
proliferation of connected devices enabling collaborative 
computing. This evolution has led to the development 
of innovative system paradigms such as ISAC [89, 105] 
and ICAC [106, 107], which aim to unify traditionally 
disparate functionalities to optimize resource usage, reduce 
hardware costs, and enhance overall system capabilities. 
For example, environmental and users' sensory data can be 

Figure 9 Four typical roles of ML in resource allocation 
—learning to solve optimizations.
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utilized to enhance communication performance through 
beam management and resource allocation, while sharing 
sensing data across network nodes enables real-time 
network monitoring and situational awareness for better 
sensing accuracy and larger coverage. Another example 
is local data processing at the edge, which can reduce 
latency for real-time communications, while high-speed 
communications enable efficient distributed computing for 
large-scale data analytics. As discussed in previous sections, 
ML (especially deep learning) techniques are indispensable 
in modern communication systems. These techniques offer 
sophisticated algorithms that can learn from vast amounts 
of data, and can therefore, optimize various aspects of 
communication networks, including resource allocation, 
signal processing, and fault detection. These benefits are 
also applicable to emerging ISAC and ICAC systems. In ISAC, 
deep learning models, such as CNNs and transformers, 
can improve sensing accuracy and robustness [108], while 
realizing semantic information transmission [109]. In ICAC, 
ML algorithms, such as federated learning, can protect 
users' data privacy and optimize computational tasks, 
facilitating efficient data processing and communication 
[110, 111]. In short, the synergy between ML/deep learning 
and the developing integrated paradigms enables more 
intelligent, adaptive, and efficient communication systems.

6.1 Integrated Sensing and 
Communication

ISAC is a paradigm that merges sensing and communication 
functionalities into a single system, leveraging shared 
infrastructure and spectral resources. This integration is 
essential in applications where both capabilities are crucial, 
such as autonomous vehicles, smart cities, and advanced 
surveillance systems. ISAC enhances the efficiency and 
performance of these systems by enabling simultaneous 
data acquisition and communication, thus reducing 
hardware costs and spectral congestion. However, this 
integration complicates the design of communication 
waveforms, the allocation of system and hardware 
resources, interference management, and overall network 
operations [112, 17]. These challenges drive the need for 
novel approaches to unlock the potential of ISAC systems in 
real-world applications. ML and deep learning techniques 
are, therefore, pivotal in ISAC, providing advanced 
data processing and decision-making capabilities. For 
comprehensive and motivational surveys on ML for ISAC, 
refer to [112, 17].

6.2 Integrated Computing and 
Communications

ICAC represents the convergence of computing and 
communication functionalities, aiming to meet the 
increasing computational demands of modern applications 
while maintaining high and robust communication 
performance. This integration is driven by the necessity 
to handle massive data processing tasks close to the 
source — handling tasks closer to the source helps reduce 
latency and improve efficiency of communications in edge 
computing environments, and enables intelligence of all 
connected devices. ICAC, which facilitates real-time data 
processing and analytics, is essential for applications like 
industrial automation, virtual reality, and the internet of 
things. Typical examples of ICAC include edge computing, 
federated learning, pervasive computing, fog computing, 
internet of things/vehicles, and autonomous systems. ML 
and deep learning are integral to ICAC, enabling dynamic 
resource allocation, adaptive system configurations, 
and real-time information analytics. These techniques 
ensure that computing and communication resources are 
utilized optimally, providing enhanced performance and 
responsiveness. For comprehensive and motivational surveys 
on ML for ICAC, refer to [16, 113, 114]. Note that, swarm 
intelligence and network control [94] are closely related 
to ICAC because controllers are, in nature, information 
processors (mapping the system's state signals to the 
system's control input signals). They are therefore ad-hoc 
computing modules.

7 Discussions and Conclusions

This paper discusses several pivotal aspects where ML can 
reform wireless communications, including but not limited to 
physical-layer communications, semantic communications, 
resource allocation, ISAC, and ICAC (e.g., federated learning, 
edge computing). These applications demonstrate ML's 
potential to upgrade various facets of communication 
systems, ranging from signal processing algorithms to 
overall network management. Nevertheless, the adoption of 
ML in communications is not without challenges and its role 
should not be overstated. Issues, such as the interpretability 
and troubleshooting of ML models, the need for large and 
rich training datasets, and the high computational resources 
(e.g., power, processing speed) required for training and 
deployment, must be addressed. In addition, particular 
focus should be given to the reliability and security of ML-
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based systems, especially in scenarios where data privacy 
(e.g., federated learning [115]), data freshness (e.g., few-
shot learning [116, 117]), and real-time decision-making 
(e.g., autonomous driving) are critical. To address these 
challenges, the hybrid methodology, which combines the 
strengths of traditional physical-law models with emerging 
data-driven ML models, is advocated. Such a synergistic 
strategy can leverage the reliability and interpretability 
of physical mechanisms while harnessing the adaptability 
and learning capabilities of ML, thus enhancing overall 
communication system performance; see Figure 10 for 
features, challenges, and future considerations of intelligent 
transmission and processing. Among all the challenges 
that we can imagine, the following three items are crucial 
in real-world operations because they are the minimum 
requirements for implementing ML-based communications 
systems:

 ● How do we interpret the performance gains and 
failures of machine-learned models, and how do we 
troubleshoot and repair failures when systems are down, 
thus improving the overall reliability of systems? In this 
sense, the paradigm in Figure 6 is more reliable and 
manageable than that in Figure 2.

 ● How do we use practically limited data for better 
generalization and how do we integrate newly available 
data to improve the generalization capability [20, 31]?  
This consideration also includes determining how 
to quickly adapt the learned model to new data, for 
example, when the environment's data-generating laws 
change over time [62, 117]. In ML terminologies, data 
freshness, sample efficiency, and data-distributional 
robustness are closely related to this issue.

 ● How do we build domain-knowledge-informed 
ML models (beyond general-purpose deep neural 
networks such as multi-layer perception) and design 
computationally efficient training algorithms (beyond 
popular stochastic gradient descent) to diminish response 
times and power consumption [12, 108, 118, 119]?  
In addition, how do we reduce the model sizes (especially 
those of deep neural networks) to save storage space 
[120]? The three considerations above are particularly 
vital for embedded and edge devices.

In summary, the convergence of ML and communication 
systems marks a significant technological advancement, 
which offers the possibility for more intelligent, efficient, 
and reliable communication networks.

Figure 10 Features, challenges, and considerations of intelligent 
transmission and processing (in Figure 3) Although data-driven  

ML is powerful, mechanism modeling (including discovering 
physical/mathematical laws) is always important to 
improve explainability, reliability, and sustainability.
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